444. N-Oxides and Related Compounds. Part XII.* Infrared Spectra of Some Carbonyl Compounds.

By A. R. KATRITZKY, A. M. MONRO, and (in part) J. A. T. BEARD, D. P. DEARNALEY, and N. J. EARL.

The positions of the carbonyl stretching band in esters and ketones show that the pyridine 1-oxide ring can release electrons to the 4-position more easily than to the 3-position, but that the reverse is true of the pyridine ring.

All the bands in a monosubstituted pyridine or oxide may be correlated with those of other compounds containing either (a) the same nucleus or (b)the same substituent. Positions and apparent extinction coefficients of bands characteristic of carbonyl compounds are treated statistically, and tentative assignments are made.

PREVIOUS papers in this series recorded dipole moments which indicated that the ring in pyridine 1-oxide,² but not the ring in pyridine-boron trichloride,³ could release electrons

- * Part XI, Hands and Katritzky, J., 1958, 1754.

- For general review see Katritzky, *Quart. Rev.*, 1956, 10, 395.
 Part IV, Katritzky, Randall, and Sutton, *J.*, 1957, 1769.
 Parts VIII and IX, Bax, Katritzky, and Sutton, *J.*, 1958, 1254, 1258.

to a substituent in the 4-position. To gain more evidence on this point, and to investigate 2- and 3-substituted compounds, in which non-linearity makes interpretation of dipole moments difficult, we have studied the infrared spectra of methyl and ethyl esters and methyl ketones. Carbonyl compounds were selected because they have already been

TABLE 1. Ethyl esters.

			1		2		3		4		5		6		7	
			СС)	Chair	1	Et, Cl scisso	H ₂ or	Et, CH bend (a	Ι ₃ ιs)	Et, C bend	H3 (s)	Et, C wa	H2 g	CCO	С
No. Comb	Ring ounds	† c x∙co	m1 Et	ε	cm1	ε	cm1	ε	cm1	ε	cm1	ε _A	cm1	εΑ	cm1	ε
1 2 3 4 5 6 7 8 9 10	Ph 4P ^a 3P 2P 4PO 3PO 2PO 4PBC 4PBB 3PBC	l ₃ Br ₃ l ₃	1716 1730 1724 1723 1722 1732 1741 1739 1739 1737	360 360 280 390 340 260 290 330 360			1467 * 1465 1470 1465 ‡ 1470 * 1468 * 1468 * 1464 1469 1469	30 25 30 55 60 55 40 35 30 50	() 1445 1447 () () () () 1447* ()	25 25 35	1391 1393 * 1392 1390 1390 1394 1391 1390 1397 1393	30 45 30 35 30 25 30 35 30 35 30 35	1369 1370 1370 1369 1369 1370 1369 1370 1371 1371	$\begin{array}{c} 90 \\ 105 \\ 100 \\ 115 \\ 125 \\ 110 \\ 75 \\ 110 \\ 100 \\ 110 \end{array}$	1313 1326 1328 1305 1303 1298 ‡ 1325 1326 1321	$ \begin{array}{c} 120\\ 135\\ 60\\ 450\\ 270\\ 560\\ 90\\ 100\\ 100\\ \end{array} $
Сотр	ounds	X·CH	[₂·CO₂	Et												
11 12 13 14	Ph 4P 3P 3PO		1730 1736 1730 1737	330 270 310 360	1415 * () () 1420 *	25 35	1465 * 1465 * (—) (—)	$\begin{array}{c} 25\\ 15\end{array}$	$\begin{array}{c} () \\ 1450 * \\ 1444 \\ () \end{array}$	20 35	1391 1390 1391 1395	20 20 30 30	1369 1370 1367 1370	75 75 85 90	1325 1325 * 1327 1334	55 55 70 70
Сотр	ounds	X·CH	I2·CH	₂·CO₂E	Et											
$15 \\ 16 \\ 17$	Ph 4P 3P		1730 1731 1731	330 330 320	1415 (—) (—)	30	() 1465 * ()	25	() 1445 * 1447	45 45	1391 + (* 35 ·) * 35	$1373 \\ 1374 \\ 1375$	90 90 85	$1340 \\ 1339 \\ 1345$	40 45 40
Comp	oounds	X·CH	СН∙С	CO2Et												
18 19 20 21 22 23 24 25	Ph 4P 3P 2P 4PO 3PO 2PO 4PBC	1 ₃ ^b	1711 1715 1715 1712 1715 1715 1715 1715	380 350 350 370 350 330 320 425	1640 1648 1646 1648 1644 1650 1639 1638	$220 \\ 85 \\ 150 \\ 85 \\ 140 \\ 85 \\ 65 \\ 270$	1465 * 1465 () () () 1468 * (CHC	25 25 35 1 ₃)	(—) 1445 1447 (—) (—) (—) (—) (CHCI	25 25 3)	1390 1392 1390 1392 1389 1391 1392 1390	30 30 25 25 30 30 35 * 40	1369 1367 1368 1368 1368 1368 1369 1369	110 105 90 95 100 100 95 130	1328 1335 1335 1317 1319 * 1319 1336	150 70 30 290 * 260 270 - 70
Comț	ounds	x∙cc	₽,Et													
1	1277	530	1249	* 100	1174	70	1110	230	1100 *	130	$1028 \ddagger$	140	—	-	870	<15
2	1282	530	1249	* 90	1174	25	1120	170	1095	35	1018	65	_	-	{ 871 851	25 30
3	1284	500	(-	—)	1167	35	${1128 \\ 1110}$	* 160 205	1086*	40	1027 ‡	170		-	853	15
4	1293	250	1244	200	1171	50	${1135}$	* 185 240	1087	65	1015	45	_	-	852	25
5 6	1284 * (—	* 280 -)	1258 (1232)) (-) -)	1120 1108	$\frac{125}{220}$	1091 * 1077	85 30	1015 1014 ±	95 230		-	(— 861	-) 20
7	1311	270	` (·	—)	1175 '	× 55	$\{1132\\1112\}$	175	1094 ‡	120	1011	45	_	-	{ 878 *	· 35
8	1283	500	1245	95	1170	20	${1112}$ ${1130}$ ${1115}$	90 50	1091 *	60	1010	75			$\begin{cases} 870 \\ 855 \end{cases}$	40 60 35
9	1285	490	1240	90	1175	30	$\begin{cases} 1139 \\ 1132 \\ 1110 \end{cases}$	* 90 95 * 55	1093 *	4 5	1012	70	-	-	$\left\{ {\begin{array}{*{20}c} 870 \\ 856 \end{array} } \right.$	$55 \\ 35$
10	1302	360	1258	55	1173	60	{1133	190	(—))	1010	75			857	65
Comt	oounds	X·CH	I. CO.	Et			·1117	190								
-11	1296	90	1250	120	1155	130	1140	* 130	1094	30	1028 ‡	130		-	-	-
$\frac{12}{13}$	$\frac{1300}{1300}$	$\frac{75}{75}$	$1256 \\ 1256$	110	$\frac{1156}{1153}$	95 120	1136°	* 80 * 110	$1095 \\ 1094$	25 40	1028	100		-		-
14^{-0}	1303 *	* 105		_)	1156	‡ 350		-)	1093	$\tilde{25}$	1027	145	-	-	-	-

						Гав	LE l .	(Cor	itinued.	.)						
	8	СС	9 O		10	c	11 D-O		12		13		14		15	
	<u> </u>		`	·····	~		۸		Et		OE	t	HC:0	CH	?	
No.	cm1	ε	cm1	ε	cm1	$\epsilon_{\rm A}$	cm1	ε	cm1	ε	cm1	ε _A	cm1	ε _Α	cm1	ε
Com	pounds	X·CH	I₂·CH₂·	CO ₂ E	t											
15	1297	90	1257	90	1180	125	${1159 \\ 1149 *}$	$\begin{array}{c} 125 \\ 110 \end{array}$	1094	40{	$\begin{array}{c} 1035 \\ 1015 \end{array}$	$\frac{85}{50}$		•	_	
16	1296	90	1247 *	• 105	1182	135	1151	105	1094	30{	1034 1018	60 40	_	•	855	20
17	1299	85	1252 *	* 100	1183	150	1154	90	1097 *	40{	1034 * 1019 *	70 40				
Com	pounds	X·CH	і: СН∙С	O ₂ Et												
18	1310	280	1271	180	1179	310			1094	4 5	1033	105	980	115	6882 860	20 40
19	${1310 \\ 1297}$	300 • 190	1266	145	1175	230		•	1093	30	1028	95 {	981 957 *	$\frac{150}{20}$	842	20
20	1311	290	1268	155	1175	200			1094	30	1025 ‡	110	981	110 {	880 865	$\begin{array}{c} 20 \\ 25 \end{array}$
$\frac{21}{22}$	$\begin{array}{c} 1299 \\ 1311 \end{array}$	$\begin{array}{c} 260 \\ 270 \end{array}$	1266 (-	140)	1161 1177 *	170 330			$\frac{1092}{1093}$	$55 \\ 55$	1029 1032 ‡	$\begin{array}{c} 100 \\ 185 \end{array}$	981 978	$\begin{array}{c} 120 \\ 155 \end{array}$	872 · 884	$<\!$
23	1303	160	(—	-)	1179	260	_		1093	30	1030	115	977	160	(875 * 836	$\frac{15}{15}$
24	1309	300	1242	200	1184	200			1094	30	1031 *	95	982	90	902	20
25	1309	390	(CH	Cl ₃)	(CHO	Cl ₃)			(—)		1027	110 {	978 968	$\begin{array}{r}165\\60\end{array}$	(CHC	(13)

* Shoulder.

 \dagger Abbreviations used are: P = pyridine. PO = pyridine l-oxide. PBCl₃ = pyridine-boron trichloride. PBBr₃ = pyridine-boron tribromide. Preceding numerals denote position of substituent.

‡ Peak considered to be formed by the superimposition of two bands, which will consequently appear twice. — Absence of band. (-) Band is masked by other stronger absorption. $(CHCl_3)$ Band masked by solvent.

^a Other band at 3310 cm.⁻¹ (20) (overtone?). ^b 0.02M-Solution in 1 mm. cell.

extensively studied (for reviews see refs. 4a, 5a) and it is well established that in a given series the C=O stretching frequency decreases as the electron-releasing power of an attached group increases.^{4a, 5a} For consistency the spectra were all measured at 0.2M-concentration in chloroform in a 0.117 mm. cell. The bands could be divided into those characteristic of the nucleus and those characteristic of the substituent. This paper records the latter; the nuclear bands will be discussed elsewhere,⁶ together with those of rings containing other substituents, with which excellent correlations are shown. Bands ($\varepsilon \ge 15$) characteristic of neither nucleus nor substituent, of which there are few, are indicated by lettered footnotes.

Chloroform was used because more compounds are soluble in it than in, e.g., carbon disulphide or carbon tetrachloride. In a 0.1 mm. cell only the bands at 3020-3000, 1240-1200 and below 805 cm.⁻¹ are obscured by solvent absorption.^{4c} Apparent molecular extinction coefficients are recorded; they are comparable between themselves, although considerably different from the true molecular extinction coefficients, both because of the variation of ε_A with concentration,^{7,8} and because of the finite slit widths used; ^{4d, 7} in addition, corrections have not been made for absorption by the finite mole fraction of solvent displaced, 4e and the difference in densities 4e and refractive indices 4f of solvent and solution; there are also other sources of error.⁴⁹ Also at 0.2M-concentration

⁸ Jones, *ibid.*, p. 235.

<sup>Jones and Sandorfy in Weissberger, "Technique of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience Publ. Inc., London, 1956: (a) p. 443 ff., (b) p. 473 ff., (c) p. 300, (d) p. 273, (e) p. 265, (f) p. 263, (g) p. 269, (h) p. 471, (i) pp. 369, 374, 377 ff., (j) p. 502 ff., (k) p. 482.
Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London, 1956: (a) p. 114—163, (b) p. 119 ff., (c) p. 21, (d) p. 161 ff., (e) p. 163.
Katritzky et al., following papers; Katritzky, Coates, Beard, Hands, and Lagowski, to be published.
Thompson, Spectrochim. Acta, 1956, 9, 133.</sup>

in the 0.117 mm. cell, values outside the range 50-250 will be very approximate, because they correspond to optical densities outside the optimum range for measurement. The

					Tabl	е2. Л	1 ethyl	esters.						
		1		2		3	-	4		5			6	
		CC)	Cha	in	OM	e			CC	0			
						CH ₃ be:	nd (s)	<u> </u>		X				-
No.	Ring	cm1	ε	cm1	ε	cm1	ε	cm1	ε	cm1	ε	C	:m1	ε
Com	bounds X•	CO ₂ Me												
26	\mathbf{Ph}	1724	37 0			1437	100	1315	140	1279	48 0		1250 *	65
27	4P	1735	390		-	1440	120	1327	160	1286	540		1254 *	75
28	3P	1730	370		•	1438	90	1328	65	1285	370			-)
29	2P	1730	340	<u> </u>	•	1446	135	1310	310	1294	190		1246	190
30	4PO	1727	390			1437	140	1304	270	(—	-)	,	1261 1	600
31	3PO	1741	300			1442 1	270	1307	t 970	1917	-)	(1230	230)
32	ADBC1	1749	200		•	1442	240	1225	- 110	1901	200 500		1949	.) 80
33 34	3PBC1	1745	420		-	1409	250	1325	× 130	1291	450		1242	35
C		CII CO	140			1111 4	200	1021	100	1001	100		1200	00
Com	Dounas A	·CH2·CU	² Me	1 4 1 0 4		1 400	0 F	1041		1000			1055	110
35	Ph	1735	310	1418 *	25	1439	95	1341	60	1299	65		1255	110
30	4P	1740	300	(•)	1440	90	1340	50	1300	60		1260	110
Com	bounds X·	CH2·CH	2·CO2	Me										
37	\mathbf{Ph}	1731	320	1418 *	25	1440	110	1365	60	1295	75		1260 *	• 80
38	4P •	1732	280	1	-)	1438	110	1365	50	$\{1310\}$	* 55		1260 *	80
~		1102	200	(,	1100	110	1000	00	(1295	80			00
Com	bounds CI	I.CH·CO	₂ Me											
39	Ph	1714	350	1640	200	1436	90	1330	195	1315	210		1278	200
40	4 P	1718	360	1648	85	1435	115	1337	120	{1312	320		1278	180
										(1297	170			
		7		0		0		1	0	1	1		14	,
		1	C	°		2			Ло	сц.	си Си		14	2
				.0.0 		:		Or Of	he	сп.	Сп		ſ	
No.	Ring	cm1	εA	cm1	ελ	cm1	εA	cm1	ε	cm1	ε	(cm1	ε,
Com	bounds X	·CO.Me	-		-				-		_			-
		(1192 *	50											
26	Ph	{ 1175	65	1114	195	1100 *	75	967	30	-	-		823	$<\!\!15$
27	4P	1192 1	60	1124	210	_	-	967	60	-	-		850	30
28	3P	1188 :	50	1112 *	· 140	1085	25	960	20				825	30
29	$2\mathrm{P}$	1193 🕯	85	1128	220	1089	4 5	966	40	-	-		833	25
30	4P0	(—	-)	1122	100	1091	50	964	65	-	-			~
31	3PO	1192 *	• 70	1109	220	1080 *	* 25	983	85	-	-		(-)
32	2PO	(-)	1136	220	1094 :	t 90	958	25	-	_		815	< 15
33	4PBCl _a	(-)	1130	105		-	960	70	-			870	30
24	2DBCI	1109 4	, 70	1121 *	· 40 950	1091 4	60	060	95					
<u> </u>	JI DCI3	1194	10	1135	200	1001	00	300	20					
Com	pounds X	·CH ₂ ·CO	₂ Me											
35	Ph	1158	125	1140 •	• 105		-	1013	60	-	-			-
36	4 P	1156	95	1140 *	85	-	-	1012	50	-			-	-
Com_{f}	þounds X	·CH2·CH	₂·CO₂	Me										
37	Ph	1194	90	1160	110		-	$\{1028$	‡ 35	-	-		-	-
0.	1 11	1101	00	1100	110			987	30					~~
38	4P ^ø	1191	90	1170	110	-	-	$\{1023$	20	_		{	832	25
Com	bounds Cl	- u'cu.cc) Mc		-			C 981	35			Ċ	810	40
Com	pounas C		2 WIE					< 1000	40	c 005	* 0F			
39	\mathbf{Ph}	1187	· 125		-		-	1014	40	1 987.	· 00		863	45
		< 1100 #	490 110					< 1014 < 1025	40 50	< 080 < 990	150	ć	850	20
4 0	4P	{ 1170	270		-		-	{ 1010	30	{ 955	15	{	842	20
)there	hondoil	990 -	-1 (95)	C		troto-	to Table	.1			-0
		• (Juner	pand at I	.339 C	m. * (35)	. See	aiso 100	unotes	i co radie	÷ 1.			

standardised conditions under which the spectra were measured are given on p. 2191. ε_{A} was reproducible with a standard deviation of about 8%.

The Carbonyl Stretching Band.—(i) When a carbonyl group is directly attached to the ring, a definite pattern of changes is observed. All the heterocyclic compounds have

higher C=O stretching frequencies than the corresponding benzene derivative; the increments in wave numbers are shown in Table 5. As the differences were small, the position of the CO band for the ethyl esters was also measured at 5 times the normal resolution; the results were within ± 2 cm.⁻¹ of those obtained in the normal way.

	TABLE 3. Methyl ketones.																
		1		2	3		4 5 6						7		8		
		CC)	Me?		Me	e			·CC	0			?		$M\epsilon$;?
No.	Ring	cm1	ε	cm1	ε _A	cm1	ε	′ cm.⁻¹	ε	cm1	ε	cm1	ε	cm1	ε _Α	cm1	ε
41	Ph ª	1680	290	1420	30	1358	135	$\{ {1309 \atop 1295}$	$rac{25}{25}$	1264	290	1245 *	70	(—)	954	45
42	4P ^b	1700	230	()		1361	135	1322	20	1263	310	1242 *	105	1082	15	960	25
43	3P	1690	340	()		1359	130			1270	280	(CHC	1 ₃)	1089	25	956	45
44	$2\mathrm{P}$	1695	240	1417	25	1358	165	1297	70	1283	160	(1234)	105)	1087 *	$<\!15$	954	45
45	4PO	1692	260	(—)		1359	150	1300	85	1280 *	130	· ()) '	1080	15	959	55
46	3PO	1707	190	(—)		1361	115	1295 *	240	()	(CHĆ	13)	1084	30	961	15
47	2PO	1691	220	(—)		1357	115	<u> </u>		1300	190	(1235)	140)	1075	30	968	15
a	Other	band	at 11	177 cm	1 (2	0). b	Shor	lder at	1146	cm1	(50).	See a	lso f	ootnote	s to '	Table	1.

TABLE 4. Aldehydes.

		1		2		3		4		5		6		7		8	3
			CF	I str.		CO s	str.	?		δCI	I	?		?		γC	H
No.	Ring	cm1	ε _A	cm. ⁻¹	ε _Α	cm. ⁻¹	ε <u>∧</u> 250	cm. ⁻¹	ε <u>λ</u>	cm. ⁻¹	ε <u>A</u>	cm. ⁻¹	ε <u>,</u>	cm1	ε <u>a</u>	cm1	ι ε _λ
48 49	4P	$\frac{2850}{2840}$	$\frac{35}{25}$	$\frac{2740}{2750}$	$<15^{30}$	$1705 \\ 1721$	$\frac{350}{280}$	1652 1674	30 30	1389	$\frac{20}{35}$	$1309 \\ 1322$	75 85	1190	65	835	120 50
$\frac{50}{51}$	3P 2P	$\begin{array}{c} 2850 \\ 2830 \end{array}$	30 30	$2740 \\ 2740 *$	20 < 15	$\frac{1712}{1717}$	370 300	1667 * 1656 *	30 20	$\begin{array}{c} 1388 \\ 1365 \end{array}$	$\frac{40}{25}$	$\begin{array}{c} 1326 \\ 1294 \end{array}$	$\frac{55}{20}$	1190 * (CHC	35 1.)	$\begin{array}{c} 832 \\ 832 \end{array}$	100 100
0-		2000	a	Other h	band a	at 1195	i cm.	$^{-1}$ (20).	Se	e also f	iootı	notes to	Tal	ole 1.	3/		

 TABLE 5. Carbonyl stretching bands. Increments in wave numbers over that for the corresponding benzenoid compound.

	4P	3P	2P	4PO	3PO	2PO	4PBCl ₃	3PBCl ₃
CO,2Et	14	8	7	6	16	25	23	21
CO, Et •	14	8	10	9	18	28	24	25
CO, Me	11	6	6	3	17	25	21	21
СОМе	20	10	15	12	27	11		
СНО	16	7	12				_	_

• Differences obtained at high resolution. The CO frequency in ethyl benzoate was 1714. See also footnote † to Table 1.

For 3- and 4-substituted compounds, in each series, the increments are in the order: Ph < 4-pyridyl 1-oxide ~ 3-pyridyl < 4-pyridyl < 3-pyridyl 1-oxide < 3- or 4-position of pyridine-boron trichloride. Thus the rings should have electron-releasing ability in the stated positions in the opposite order. This agrees with evidence from dipole moments,^{2,3} ultraviolet spectra,⁹ and chemical reactivity (electrophilic reagents attack pyridines in the 3-, but pyridine 1-oxides in the 4-position ¹), and with theoretical predictions. In no important canonical form of pyridine 1-oxide does a negative charge appear at the 3-position, and inductive effects make the 1-oxide less able than the pyridine to release electrons at that position. The ring of pyridine-boron trichloride is still less able to release electrons in both the 3- and the 4-position.

Consideration of the 2-substituted compounds is more difficult owing to possible steric hindrance (in the 1-oxides) and direct field effects. The increments for the 2-substituted pyridine 1-oxide esters are much greater than for 2-acetylpyridine 1-oxide. This may be because both the planar configurations (I and II) of the ester are unfavoured owing to steric and direct field effects, but the ketone can adopt the configuration (III) with

⁹ Katritzky and Monro, unpublished work.

possibly a weak hydrogen bond. The reluctance of pyridine oxides to undergo electrophilic substitution in the 2-position is probably due to the direct field effect.¹ Electronavailability at the 2-position in pyridines appears to be intermediate between that in the 3- and the 4-position.

(ii) For compounds X·CH₂·CO₂Et, the effect seems to persist weakly, for the frequencies are in the order: Ph \sim 3-pyridyl < 4-pyridyl \sim 3-pyridyl 1-oxide; but in compounds X·CH₂·CH₂·CO₂Et the position of the CO band is constant at 1731 cm.⁻¹ and in compounds X•CH•CH•CO₂Et it is relatively constant at 1715 cm.⁻¹, somewhat lower, as expected,^{4h} than the 1735 and 1720 cm.⁻¹ recorded in non-polar solvents for fatty and $\alpha\beta$ -unsaturated esters respectively.4a

(iii) The intensities of the carbonyl bands are in the ranges: ethyl esters (260-390) [(335+35)]; * methyl esters (260-420) [(340+45)]; methyl ketones (190-340) $[(250 \pm 50)]$; and aldehydes (280-370). These values are lower than those which were recorded for similar compounds when a calcium fluoride prism was used ¹⁰ (e.g., Ph·CH₂·CO₂Et 540, Ph·CO₂R ca. 700^{10c}), but they agree with Cross and Rolfe's measurements ¹¹ with sodium chloride optics (Ph•COMe 310, R•CO₂R ca. 350, Ph•CHO 320).

The 3000 cm.⁻¹ Region.—Of the CH stretching bands, because of solvent interference.⁶ the sodium chloride prism resolved only the band due to the hydrogen atom of the CHO group; in each of the aldehydes a doublet was found near 2850 and 2750 cm.⁻¹ (≤ 40) (Table 4, cols. 1 and 2); such doublets have been observed and discussed for other aldehvdes by Pinchas.¹²

The 1650 cm.⁻¹ Region.—(i) Compounds X·CH:CH·CO₂Et (Table 1, col. 2) and X·CH:CH·CO₂Me (Table 2, col. 2) show the C:C stretching band at 1651-1638 [1644 ± 4] cm.⁻¹; it had been reported ⁴ⁱ that for the C:C band in $\alpha\beta$ -unsaturated ketones the intensity increased and the position was lowered by ca. 30 cm.⁻¹, from the 1678-1668 cm.⁻¹ of unconjugated compounds. The intensity and frequency $(cm.^{-1})$ of the bands are in the order:

				4-Pyridyl				3-Pyridyl				2-Pyridyl
\mathbf{Ph}		3-Pyridyl		1-oxide		4-Pyridyl		1-oxide		2-Pyridyl		1-oxide
220	>	150	\sim	140	>	85	~	85	~	85	>	65
1640	<	1646	~	1644	<	1649	~	1650	\sim	1648	>	1639

thus it appears that the greater the electron-donating power of the ring, the greater is the intensity of the band, and the lower its frequency (i.e., the greater the single-bond character). The frequency for the 2-substituted pyridine oxide, and the frequency and intensity for the 4-substituted pyridine-boron trichloride are out of line with this generalisation; possibly here receipt of electrons by the ring from the double bond becomes of overriding importance.

The bands for the two available compounds X·CH·CO₂Me agree well with those for corresponding ethyl esters.

^{*} Values in parentheses are apparent molecular extinction coefficients. Values in square brackets are arithmetical means and standard deviations, calculated by omitting those compounds where the band is present as a shoulder, and, in the case of ε_A , those in which it is superimposed on another band or measured in a 1 mm. cell.

¹⁰ (a) Jones, Ramsay, Keir, and Dobriner, J. Amer. Chem. Soc., 1952, **74**, 80; (b) Marion, Ramsay, and Jones, *ibid.*, 1951, **73**, 305; (c) Hampton and Newell, Analyt. Chem., 1949, **21**, 914.
¹¹ Cross and Rolfe, Trans. Faraday Soc., 1951, **47**, 354.

¹² Pinchas, Analyt. Chem., 1957, 29, 334.

(ii) The aldehydes show a weak band or shoulder (Table 4, col. 4) at 1674-1652 cm⁻¹ (20-30), possibly due to contamination by the corresponding acid.

The 1500-1350 cm.⁻¹ Region.—Previous workers have noticed that intensities of methyl and methylene C-H deformations are enhanced when the groups are near an oxygen atom,^{5c, 13} and we confirm this.*

(i) Where these frequencies are at >1410 cm.⁻¹ they are overlapped by nuclear bands.⁶ and interpretation of the spectrum can be difficult; but the known 13, 14 asymmetrical bending vibrations of CO₂Me groups at 1446—1435 cm.⁻¹ (90—140 except for the 2-pyridyl 1-oxide derivative where it is overlapped) $[1439 \pm 3 \text{ cm}^{-1} (110 \pm 15)]$ is easily distinguished (Table 2, col. 3). In methyl acetate the band occurs at 1435 cm^{-1} (130).¹⁵ The ethyl esters show weaker bands at 1470-1460 cm⁻¹ (25-50) and 1447-1444 cm⁻¹ (25-45) (Table 1, cols. 3 and 4), corresponding respectively to the scissors methylene vibration and the asymmetrical bending of the (ethoxy) methyl group found by Jones and Nolin ¹⁶ at respectively 1464 (35) and 1446 cm.⁻¹ (40) for ethyl acetate. For the only two methyl ketones where the region is not obscured, bands are found at 1420-1417 cm⁻¹ (25-30) (Table 3, col. 2). Weak bands or shoulders at 1418-1415 cm.⁻¹ are sometimes found for the esters X·CH₂·CO₂R and X·CH₂·CO₂R (Table 1, col. 2; Table 2, col. 2).

(ii) The known methyl CH deformation for acetyl groups (ref. 13, at ca. 1364 cm.-1; ref. 17, at 1370 cm.⁻¹) was found at 1361–1357 cm.⁻¹ (115–165) $[1359 + 1.5 \text{ cm}.^{-1}]$ (135 + 20)] (Table 3, col. 3).

(iii) The ethyl esters show bands at 1397–1389 cm.⁻¹ (20–35) [1391.5 \pm 2 cm.⁻¹ (30 ± 5)] and 1375-1367 cm.⁻¹ (75-125) $[1370 \pm 2$ cm.⁻¹ (100 ± 10)] (Table 1, cols. 5 and 6), corresponding respectively to the (ethoxy) methyl symmetrical bending and methylene wagging modes found by Nolin and Jones¹⁶ at respectively 1393 (35) and 1359 cm.⁻¹ (60) for ethyl acetate; the latter was found at ca. 1372 cm.⁻¹ by Francis ¹³ for some simple ethyl esters.

(iv) The aldehydes show a weak band at 1389-1365 cm.⁻¹ (20-40) (Table 4, col. 5), which is probably the CH in-plane deformation mode shown in Raman spectra as a strong band at ca. 1390 cm.-1.18

The 1350-1240 cm.⁻¹ Region.—The absorption in this region is assigned to the group (IV) because corresponding methyl and ethyl esters show almost identical absorption there (Table 1, cols. 7-9; Table 2, cols. 4-6) and the absorption of the methyl ketone (IV; X = C instead of O) is similar (Table 3, cols. 4–6), but that of the aldehydes is very different (Table 4, col. 6). The absorption depends on the environment of the carbon atom to which the carbonyl group is attached. Interpretation of this region in the oxides is sometimes difficult because of overlap with the intense N^+O^- band. Strong absorption by esters has been found previously in this region,^{4i, 5d} and assigned to C-O stretching modes. Where the acid radical is kept constant and the alkyl radical changed the position of the band varies inversely with that of the C=O stretching band; 4t this is neither expected nor found in our compounds.

(i) Compounds X·CH_o·CO_oEt and X·CH_o·CO_oEt and the corresponding methyl esters all show three bands, which steadily increase in intensity towards lower frequencies.

^{*} In γ -picoline oxide the intensity of the CH₃ symmetrical deformation is <10, but in α -picoline oxide it is 25, doubtless owing to the proximity of the N+O- group (Katritzky, Beard, and Monro, unpublished observations).

¹⁸ Francis, J. Chem. Phys., 1951, **19**, 942.

¹⁴ Jones, Cole, and Nolin, J. Amer. Chem. Soc., 1952, 74, 5648, 5662.
¹⁵ Nolin and Jones, Canad. J. Chem., 1956, 34, 1382.

¹⁶ Idem, ibid., p. 1392.

¹⁷ Thompson and Torkington, J., 1945, 640.

¹⁸ Kohlrausch, "Ramanspecktren," Becker and Erler, Leipzig, 1943, pp. 281-282.

The first band is at 1365 cm.⁻¹ for X·CH₂·CH₂·CO₂Me, at 1346—1341 cm.⁻¹ for X·CH₂·CO₂Me, at 1345—1339 cm.⁻¹ for X·CH₂·CO₂Et, and at 1334—1325 cm.⁻¹ for X·CH₂·CO₂Et; the intensities are all (40—70) [(55 ± 10)]. All the compounds show the other bands at 1300—1295 cm.⁻¹ (60—90) [1298 ± 2 cm.⁻¹ (80 ± 10)] and at 1260—1250 cm.⁻¹ (90—125) [1256 ± 3 cm.⁻¹ (110 ± 10)]. The first of these three bands may be due to a wagging mode of the group adjacent to the carbonyl, which shows at 1356 cm.⁻¹ in methyl propionate and at 1347 cm.⁻¹ in ethyl propionate.¹³

(ii) Compounds X•CO₂Et, X•CO₂Me, X•CH:CH•CO₂Et, and X•COMe also show in general three bands in this region; the positions and intensities depend in a regular way both on the ring and on the substituent. Absorption in the two compounds X•CH:CH•CO₂Me available closely resembles that in the corresponding compounds X•CH:CH•CO₂Et.

(a) The first of these bands for compounds X·CO₂Me, X·CH:CH·CO₂Et, and X·COMe are respectively at the following positions relative to that for X·CO₂Et: 0—5 [1·5 ± 1·5] higher, 7—15 [10·5 ± 3] higher and 3—8 [5 ± 2] cm.⁻¹ lower, and 0·69—1·22 [1·06 ± 0·19], 0·50—1·25 [0·80 ± 0·30], and 0·15—0·31 [0·21 ± 0·07] times as intense. If the benzenoid compounds (intensity 120—150 in the esters, 25 in the ketone) are taken as standards, the bands in the corresponding 3- and 4-pyridyl derivatives and their boron trichloride compounds are 7—15 [11 ± 3] cm.⁻¹ higher and of intensity (30—160) [(90 ± 40)] for the esters and (20) for the ketone. For the 2-pyridyl and 4- and 3-pyridyl 1-oxide derivatives the bands are 5—15 [10 ± 3] cm.⁻¹ lower and of intensity (270—450) [310 ± 80] for the esters and *ca*. (80) for the ketones.

(b) The second band is at a relatively constant position 1311-1299 [1308 ± 4] cm.¹ and intensity (160-300) [265 ± 50] in the compounds X·CH:CH·CO₂Et. The in-plane *trans*-CH=CH deformation mode would be expected in this region, but the band is weak, at least in non-conjugated olefins.¹⁹

Fluctuations in position and intensity are again parallel for compounds $X \cdot CO_2Et$, $X \cdot CO_2Me$, and $X \cdot COMe$. Bands for corresponding compounds in the last two series are respectively at positions 1-8 [$3\frac{1}{2} \pm 2\frac{1}{2}$] cm.⁻¹ higher, and 10-19 [13 ± 3] cm.⁻¹ lower than, and of intensity 0.74-1.25 [0.95 ± 0.17] and 0.55-0.70 [0.61 ± 0.06] times, those of the $X \cdot CO_2Et$ series.

In compounds X·CO₂Et, X·CO₂Me, and X·COMe the position relative to the corresponding phenyl compound varies in the order: 2-pyridyl 1-oxide 34—38, 3-pyridyl-boron trichloride 24—25, 2-pyridyl 15—19, 4-pyridyl-boron trichloride 6—12, 3-pyridyl 6—7, and 4-pyridyl —1 to 7 wavenumbers higher. The intensities for methyl and ethyl pyridine-2-carboxylate and their oxides are (190—280) [(240 \pm 35)], and for the ketones (160—190); whereas in the 3- and 4-pyridyl series, as well as for their boron chloride compounds and the phenyl series, the esters have an intensity of (360—540) [(475 \pm 65)], and the ketones (280—310).

(c) The third band is too often obscured by solvent or N^+-O^- absorption for any definite conclusions to be legitimate about its position or intensity.

(iii) The aldehydes show a single band at 1326-1294 cm.⁻¹ (20-85).

The 1200—1100 cm.⁻¹ Region.—Absorption in this region is assigned to the group (V), for ketones do not absorb here, and aldehydes show merely a single band at ca. 1190 cm.⁻¹ (≤ 70) (Table 4, col. 7), but the absorption in corresponding methyl and ethyl esters is very similar (Table 1, cols. 10 and 11; Table 2, cols. 7 and 8).

(i) Compounds X·CH:CH·CO₂R (R = Et and Me) show one band at 1184—1161 cm.⁻¹ (170—310) [1174 \pm 7 cm.⁻¹ (240 \pm 50)]. A band at 1200—1100 cm.⁻¹ has been reported for unsaturated esters.^{5e}

(ii) Compounds X·CH₂·CO₂R (R = Et and Me) show a band at 1158–1153 cm.⁻¹ (95–130) [1155 ± 2 cm.⁻¹ (110 ± 15)] which has a shoulder at 1140*–1136* cm.⁻¹ (80–130).

(iii) Compounds X·CH₂·CH₂·CO₂Et show two bands at 1183—1180 cm.⁻¹ (125—150) ¹⁹ Sheppard and Simpson, *Quart. Rev.*, 1952, **6**, 1. and 1159—1151 cm.⁻¹ (90—125); these two bands are shown by the compounds $X \cdot CH_2 \cdot CO_2 Me$ at *ca*. 10 cm.⁻¹ higher frequencies, but have very similar intensities.

(iv) Compounds X·CO₂Et show a band at 1175—1170 cm.⁻¹ (20—70) [1172 \pm 3 cm.⁻¹ (40 \pm 20)] which is at higher frequencies (\geq 1188) in compounds X·CO₂Me and is partly obscured by solvent absorption. Compounds X·CO₂Me and X·CO₂Et absorb at 1136—1108 cm.⁻¹ (100—275) [1123 \pm 10 cm.⁻¹ (180 \pm 55)]; the peak for the former is at 0—4 cm.⁻¹ above that for the latter and has 0·80—1·30 [1·07 \pm 0·17] times the intensity. The peaks for these ethyl esters often show a shoulder.

The 1100—1080 cm.⁻¹ Region.—In this region (Tables 1—3, cols. 12, 9, and 7 respectively), all the ethyl esters and ketones show a peak at respectively 1095—1077 cm.⁻¹ (25—65) [1092 ± 4 cm.⁻¹ (35 ± 10)] and 1089—1075 cm.⁻¹ (15—30) [1082 ± 5 cm.⁻¹ (25 ± 10)], which is present only for those methyl esters with the group directly attached to the ring, and not all of these. The band is possibly present in spectra of the other methyl esters at intensities too low to be distinguished. Ethyl acetate shows a band at 1097 cm.⁻¹ (40).¹⁶

The 1040—950 cm.⁻¹ Region.—(i) The trans-CH:CH CH deformation of compounds X·CH:CH·CO₂R (R = Me and Et) occurs at 982—977 cm.⁻¹ (90—165) [980 \pm 2 cm.⁻¹ (130 \pm 25)] (Table 1, col. 14; Table 2, col. 11); in simple trans-olefins it occurs at 980—965 cm.⁻¹ (50—150).⁴ⁱ

(ii) The ketones show a band at 968—954 cm.⁻¹ (15—55) [959 \pm 5 cm.⁻¹ (35 \pm 15)] (Table 3, col. 8).

(iii) All the ethyl esters have a band at 1035—1010 cm.⁻¹ (45—145) (Table 1, col. 13), but the position and intensity is more exactly defined for each type; thus compounds X·CH₂·CO₂Et and X·CH:CH·CO₂Et have the band at 1028—1027 cm.⁻¹ (100—145) and 1033—1027 cm.⁻¹ (95—115) [1029 \pm 3 cm.⁻¹ (105 \pm 10)] respectively; and for compounds X·CH₂·CH₂·CO₂Et a main band is found at 1035—1034 cm.⁻¹ (60—85) and a subsidiary one at 1018—1015 cm.⁻¹ (40—50). The relative positions of the band for compounds X·CO₂Et are Ph (1028 cm.⁻¹) > 3- > 4- > 2-pyridyl ~ 4- > 3- > 2-pyridyl 1-oxide ~ 3- ~ 4-pyridyl-boron trichloride (1010 cm.⁻¹), which is the order of electron-withdrawing ability of the ring; ^{2,3} the intensity is (45—95) [(70 \pm 15)].

(iv) The corresponding band for the methyl esters is presumably that in Table 2, col. 10. For compounds X·CO₂Me it appears at 983—958 cm.⁻¹ (20—85) [965 \pm 8 cm.⁻¹ (45 \pm 25)]; there is no simple dependence of position on the electron-withdrawing ability of the ring. The band occurs at considerably higher frequencies in spectra of the other compounds, and as a doublet for X·CH₂·CH₂·CO₂Me (cf. X·CH₂·CH₂·CO₂Et). A band at 980 cm.⁻¹ (20) has been reported ¹⁵ for methyl acetate.

The 900—800 cm.⁻¹ Region.—(i) The aldehydes show the CH out-of-plane deformation band at 835—828 cm.⁻¹ (50—120) (Table 4, col. 8), in the range 975—825 cm.⁻¹ given by Colthup.²⁰

(ii) One or two weak bands of unknown origin are found for many ethyl (Table 1, col. 15) and some methyl esters (Table 2, col. 12) at 880–850 cm.⁻¹ (≤ 65).

Conclusions.—The 1400—800 cm.⁻¹ region of the spectrum has been shown to be much more amenable to quantitative treatment than was previously suspected. Apparent extinction coefficients are reproducible and comparable when measured under standard conditions, and are shown to be of great value to the interpretation of the spectrum in terms of structural groups.

Experimental

Preparation of Compounds.—The pyridine-aldehydes and most of the benzenoid compounds were redistilled commercial products; the others were prepared by standard methods. The

²⁰ Colthup, J. Opt. Soc. Amer., 1950, 40, 379.

preparations of most of the pyridines and 1-oxides have already been reported; ^{3, 6, 21} compounds were recrystallised or redistilled before measurement.

2-Ethoxycarbonylpyridine 1-Oxide.-Hydrogen chloride was passed 6 hr. through picolinic acid 1-oxide (4.5 g.) in boiling ethanol [100 c.c.; dried over Mg(OEt)2]. Volatile material was removed at $100^{\circ}/15$ mm., the residue added to water (50 c.c.) at 0° , and the whole basified with aqueous sodium carbonate and extracted with chloroform (5 \times 30 c.c.). Distillation of the dried extracts gave the ester oxide (0.15 g., 3%), b. p. 170-180° (bath)/0.4 mm. (Found: C, 57.6; H, 5.7. C₈H₉O₃N requires C, 57.5; H, 5.4%).

The methyl ester oxide was similarly prepared (3%, but 60% of acid recovered), b. p. 175-180° (bath)/0·1 mm. (Found: C, 54·8; H, 4·7. C₇H₇O₃N requires C, 54·9; H, 4·6%). The compound has been reported ^{22, 23} as an intermediate, but not characterised.

Attempts to prepare the above compounds by oxidation of the pyridine esters by peracetic acid failed.

Boron Halide Complexes.—The following were made by the method given in Part VIII:³ 4-ethoxycarbonylpyridine-boron tribromide, prisms, m. p. 97-98°, from ethanol (Found: N, 3.5; Br, 59.7. C₈H₉O₂NBr₃B requires N, 3.5; Br, 59.7%); 3-ethoxycarbonyl-, m. p. 64-65°, from ethanol (Found: C, 36.0; H, 3.8. $C_8H_9O_2NCl_3B$ requires C, 35.8; H, 3.4%); 4-(2-ethoxycarbonylvinyl)-, rhombs, m. p. 202-204°, from ethanol (Found: C, 40.4; H, 4.2. $C_{10}H_{11}O_2NCl_3B$ requires C, 40.8; H, 3.8%; 4-methoxycarbonyl- (87%), prisms, m. p. 115-117°, from ethanol (Found: C, 32.9; H, 2.8; N, 5.3. C₇H₇O₂NCl₃B requires C, 33.1; H, 2.8; N, 5.5%); 3-methoxycarbonyl-pyridine-boron trichloride (54%), prisms, m. p. 113-114°, from ethanol (Found: C, 33.1; H, 2.8; N, 5.5%).

Preparation of Oxides.-Oxidation of the corresponding pyridine with peracetic acid gave: 4-methoxycarbonyl-, m. p. 116.5—118.5°, from ethyl acetate (lit.,²⁴ 118—119°); 3-methoxycarbonyl-, m. p. 97-98°, from ethyl acetate (lit., 25 m. p. 97°; 23 m. p. 101-102°), and 2-acetylpyridine 1-oxide, b. p. 82° (bath)/0.3 mm. (Found: C, 61.6; H, 5.3. C₇H₇O₂N requires C, 61.3; H, 5.2% [picrolonate, prisms (from ethanol), changing to needles at 109°, then melting at 157° (Found: C, 50·4; H, 3·9. C₁₇H₁₅O₇N₅ requires C, 50·9; H, 3·8%)].

Measurement of Spectra.—A Perkin-Elmer model 21 instrument was used with the following settings: gearing 2" per micron; mechanical speed belt at bottom but one position; electrical speed 4; no auto-suppression (*i.e.*, speed 20 min. per run); gain 7.7; mechanical response 1; electrical response 1; light source 0.34 amp.; slit programme 4 (i.e., resolution at 1600, 1400, 1250, 1100, and 850 cm.⁻¹ was respectively 8.0, 5.5, 4.7, 3.8, 2.6 wave numbers). A sodium chloride prism was used.

The work described in this and the four following papers was done during the tenure (by A. R. K.) of an I.C.I. Fellowship, and we are greatly indebted to Mrs. A. J. D. Katritzky for much help with the computation, to Dr. M. C. Whiting and other colleagues in Oxford for their interest in this work, to Mr. G. Taylor for comments on the statistical treatment, and to Dr. N. Sheppard for very helpful discussion. The spectra were measured by Mr. F. Hastings and Mrs. W. Sheldon (under Dr. Strauss's supervision).

THE DYSON PERRINS LABORATORY, OXFORD UNIVERSITY. [Received, December 5th, 1957.] [Present address (A. R. K).—UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.]

²¹ (a) Part II, Katritzky, *J.*, 1956, 2404; (b) Parts VII and X, Katritzky and Monro, *J.*, 1958, 150, 1263; (c) Katritzky, *J.*, 1955, 2581, 2586.

 ²² Newbold and Spring, J., 1949, S 133.
 ²³ Shimizu, Naito, Ohta, Yoshikawa, and Dohmori, J. Pharm. Soc. Japan, 1952, 72, 1474; Chem. Abs., 1953, 47, 8077.

²⁴ Yale, Losee, Martins, Holsing, Perry, and Berstein, J. Amer. Chem. Soc., 1953, 75, 1933.

²⁵ Clemo and Koenig, J., 1949, S231.