444. N-Oxides and Related Compounds. Part XII.* Infrared Spectra of Some Carbonyl Compounds.

By A. R. Katritzky, A. M. Monro, and (in part) J. A. T. Beard, D. P. Dearnaley, and N. J. Earl.

The positions of the carbonyl stretching band in esters and ketones show that the pyridine 1 -oxide ring can release electrons to the 4 -position more easily than to the 3 -position, but that the reverse is true of the pyridine ring.

All the bands in a monosubstituted pyridine or oxide may be correlated with those of other compounds containing either (a) the same nucleus or (b) the same substituent. Positions and apparent extinction coefficients of bands characteristic of carbonyl compounds are treated statistically, and tentative assignments are made.
Previous papers in this series recorded dipole moments which indicated that the ring in pyridine l-oxide, ${ }^{2}$ but not the ring in pyridine-boron trichloride, ${ }^{3}$ could release electrons

[^0]to a substituent in the 4-position. To gain more evidence on this point, and to investigate 2 - and 3 -substituted compounds, in which non-linearity makes interpretation of dipole moments difficult, we have studied the infrared spectra of methyl and ethyl esters and methyl ketones. Carbonyl compounds were selected because they have already been

Table 1. Ethyl esters.

Table 1. (Continued.)

	8		9	10		11		12		13		14			5
		CC			C	O		Et		OE		$\mathrm{HC}^{\circ} \mathrm{C}$?
No.	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1} \quad \varepsilon_{\mathrm{A}}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$		cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	cm	$\varepsilon_{\text {A }}$
Com	unds	$\mathrm{X} \cdot \mathrm{CH}$	$\mathrm{H}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2}$												
15	1297	90	125790	1180	125	$\left\{\begin{array}{l}1159 \\ 1149\end{array}\right.$	125	1094		1035 1015	85 50	-			
16	1296	90	1247 * 105	1182	135	1151	105	1094		1034 1018	60 40			855	20
17	1299	85	$1252 * 100$	1183	150	1154	90	1097*		1034**	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	-			-
Con	nds	C	: $\mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$												
18	1310	280	1271180	1179	310	-		1094	45	1033	105	980	115	8882	20 40
19	$\left\{\begin{array}{l} 1310 \\ 1297 * \end{array}\right.$	$\begin{aligned} & 300 \\ & 190 \end{aligned}$	1266145	1175	230	-		1093	30	1028	95 \{	$\begin{aligned} & 981 \\ & 957 * \end{aligned}$	$\begin{array}{r} 150 \\ 20 \end{array}$	842	20
20	1311	290	1268155	1175	200	-		1094	30	$1025 \ddagger$	110	981	110 \{	880	20
21	1299	260	$1266 \quad 140$	1161	170	-		$1092 \ddagger$	55	1029	100	981	120	872	<15
22	1311	270	(-)	1177*	330	-		1093	55	$1032 \ddagger$	185	978	155	884	15
23	1303	160	(-)	1179	260	-		1093		1030	115	977	160	875	* 15
24	1309	300	$1242 \quad 200$	1184	200	-		1094	30	1031*	95	982	90	902	20
25	1309	390	$\left(\mathrm{CHCl}_{3}\right)$	(CHC		-		(-)		1027	$110\{$	978 968	165 60	(C)	Cl_{3})

* Shoulder.
\dagger Abbreviations used are: $\mathrm{P}=$ pyridine. $\mathrm{PO}=$ pyridine 1 -oxide. $\mathrm{PBCl}_{3}=$ pyridine-boron trichloride. $\mathrm{PBBr}_{3}=$ pyridine-boron tribromide. Preceding numerals denote position of substituent.
\ddagger Peak considered to be formed by the superimposition of two bands, which will consequently appear twice. - Absence of band. (-) Band is masked by other stronger absorption. (CHCl_{3}) Band masked by solvent.
${ }^{a}$ Other band at $3310 \mathrm{~cm} .^{-1}$ (20) (overtone?). ${ }^{b} 0.02 \mathrm{~m}$-Solution in 1 mm . cell.
extensively studied (for reviews see refs. $4 a, 5 a$) and it is well established that in a given series the $\mathrm{C}=\mathrm{O}$ stretching frequency decreases as the electron-releasing power of an attached group increases. ${ }^{4 a, 5 a}$ For consistency the spectra were all measured at $0 \cdot 2 \mathrm{~m}$-concentration in chloroform in a 0.117 mm . cell. The bands could be divided into those characteristic of the nucleus and those characteristic of the substituent. This paper records the latter; the nuclear bands will be discussed elsewhere, ${ }^{6}$ together with those of rings containing other substituents, with which excellent correlations are shown. Bands ($\varepsilon \geqslant 15$) characteristic of neither nucleus nor substituent, of which there are few, are indicated by lettered footnotes.

Chloroform was used because more compounds are soluble in it than in, e.g., carbon disulphide or carbon tetrachloride. In a 0.1 mm . cell only the bands at $3020-3000$, $1240-1200$ and below $805 \mathrm{~cm} .^{-1}$ are obscured by solvent absorption. ${ }^{4 c}$ Apparent molecular extinction coefficients are recorded; they are comparable between themselves, although considerably different from the true molecular extinction coefficients, both because of the variation of $\varepsilon_{\boldsymbol{A}}$ with concentration, ${ }^{7,8}$ and because of the finite slit widths used; ${ }^{4 d, 7}$ in addition, corrections have not been made for absorption by the finite mole fraction of solvent displaced, ${ }^{4 e}$ and the difference in densities ${ }^{4 e}$ and refractive indices ${ }^{4 f}$ of solvent and solution; there are also other sources of error. ${ }^{4 g}$ Also at $0 \cdot 2 \mathrm{M}$-concentration

[^1]in the 0.117 mm . cell, values outside the range $50-250$ will be very approximate, because they correspond to optical densities outside the optimum range for measurement. The

a Other band at $1339 \mathrm{~cm} .^{-1}$ (35). See also footnotes to Table 1.
standardised conditions under which the spectra were measured are given on p. 2191. ε_{A} was reproducible with a standard deviation of about 8%.

The Carbonyl Stretching Band.-(i) When a carbonyl group is directly attached to the ring, a definite pattern of changes is observed. All the heterocyclic compounds have

2186 Katritzky, Monro, Beard, Dearnaley, and Earl:
higher $\mathrm{C}=\mathrm{O}$ stretching frequencies than the corresponding benzene derivative; the increments in wave numbers are shown in Table 5. As the differences were small, the position of the CO band for the ethyl esters was also measured at 5 times the normal resolution; the results were within $\pm 2 \mathrm{~cm} .^{-1}$ of those obtained in the normal way.

Table 3. Methyl ketones.

		$\begin{gathered} 1 \\ \mathrm{CO} \end{gathered}$		$\begin{gathered} 2 \\ \mathrm{Me} ? \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{Me} \end{gathered}$			4	$\begin{gathered} \mathbf{5} \\ \cdot \mathrm{CO} \end{gathered}$				7		Me	
No.	Ring	m. ${ }^{-1}$		cm. ${ }^{-1}$		cm. ${ }^{-1}$		cm. ${ }^{-1}$		$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1} \quad \varepsilon_{\Delta}$	m. ${ }^{-1}$		n.	
41	Ph ${ }^{\text {a }}$	1680	290	1420	30	1358	135	$\left\{\begin{array}{l}1309 \\ 1295\end{array}\right.$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	1264	290	1245*70	(-)		954	45
42	$4 \mathrm{P}{ }^{\text {b }}$	1700	230	(-)		1361	135	1322	20	1263	310	1242* 105	1082	15	960	25
43	3 P	1690	340	(-)		1359	130			1270	280	$\left(\mathrm{CHCl}_{3}\right)$	1089	25	956	45
44	2 P	1695	240	1417	25	1358	165	1297	70	1283	160	$(1234$ 105)	1087*	<15	954	4
45	4 PO	1692	260	(-)		1359	150	1300	85	1280*	130	(-)	1080	15	959	5
46	3 PO	1707	190	(-)		1361	115	1295*	240	(-)		$\left(\mathrm{CHCl}_{3}\right)$	1084	30	961	15
47	2PO	1691	220	(-)		1357	115	-		1300	190	$\left(\begin{array}{ll}1235 & 140\end{array}\right)$	1075	30	968	

Table 4. Aldehydes.

No.		1	2			3		4		5		6		7	$\stackrel{8}{\gamma \mathrm{CH}}$	
			CH str.			CO str.		?		$\delta \mathrm{CH}$?		?		
	Ring	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	cm^{-1}	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm}^{-1} \varepsilon_{\mathrm{A}}$	cm. ${ }^{-1}$	$\varepsilon_{\text {A }}$
48	$\mathrm{Ph}{ }^{\text {a }}$	2850	35	2740	35	1705	350	1652	30	1389	20	1309	75	116570	828	120
49	4P	2840	25	2750	<15	1721	280	1674	30	1388	35	1322	85	119065	835	50
50	3P	2850	30	2740	20	1712	370	1667 *	30	1388	40	1326	55	1190 * 35	832	100
51	2P	2830	30	2740*	<15	1717	300	1656 *	20	1365	25	1294	20	$\left(\mathrm{CHCl}_{3}\right)$	832	100
				Other b	nd	1195	cm	(20).	Se	also	otn	tes	Tab	le 1.		

Table 5. Carbonyl stretching bands. Increments in wave numbers over that for the corresponding benzenoid compound.

	4 P	3 P	2 P	4 PO	3 PO	2 PO	$4 \mathrm{PBCl}_{3}$	$3 \mathrm{PBCl}_{3}$
$\mathrm{CO}_{2} \mathrm{Et} \ldots \ldots \ldots$.	14	8	7	6	16	25	23	21
$\mathrm{CO}_{2} \mathrm{Et} \ldots \ldots \ldots$.	14	8	10	9	18	28	24	25
$\mathrm{CO}_{2} \mathrm{Me} \ldots \ldots \ldots$.	11	6	6	3	17	25	21	21
$\mathrm{COMe} \ldots \ldots \ldots$.	20	10	15	12	27	11	-	-
$\mathrm{CHO} \ldots \ldots \ldots$.	16	7	12	-	-	-	-	-

${ }^{a}$ Differences obtained at high resolution. The CO frequency in ethyl benzoate was 1714. See also footnote \dagger to Table 1.

For 3- and 4-substituted compounds, in each series, the increments are in the order: $\mathrm{Ph}<4$-pyridyl 1 -oxide ~ 3-pyridyl <4-pyridyl <3-pyridyl 1 -oxide <3 - or 4 -position of pyridine-boron trichloride. Thus the rings should have electron-releasing ability in the stated positions in the opposite order. This agrees with evidence from dipole moments, ${ }^{2,3}$ ultraviolet spectra, ${ }^{9}$ and chemical reactivity (electrophilic reagents attack pyridines in the 3 -, but pyridine 1 -oxides in the 4 -position ${ }^{1}$), and with theoretical predictions. In no important canonical form of pyridine l-oxide does a negative charge appear at the 3 -position, and inductive effects make the 1 -oxide less able than the pyridine to release electrons at that position. The ring of pyridine-boron trichloride is still less able to release electrons in both the 3 - and the 4 -position.

Consideration of the 2 -substituted compounds is more difficult owing to possible steric hindrance (in the 1 -oxides) and direct field effects. The increments for the 2 -substituted pyridine 1 -oxide esters are much greater than for 2 -acetylpyridine 1 -oxide. This may be because both the planar configurations (I and II) of the ester are unfavoured owing to steric and direct field effects, but the ketone can adopt the configuration (III) with

[^2]possibly a weak hydrogen bond. The reluctance of pyridine oxides to undergo electrophilic substitution in the 2 -position is probably due to the direct field effect. ${ }^{1}$ Electronavailability at the 2-position in pyridines appears to be intermediate between that in the 3 - and the 4 -position.

(I)

(II)

(III)
(ii) For compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$, the effect seems to persist weakly, for the frequencies are in the order: $\mathrm{Ph} \sim 3$-pyridyl <4-pyridyl ~ 3-pyridyl l-oxide; but in compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ the position of the CO band is constant at $1731 \mathrm{~cm} .{ }^{-1}$ and in compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$ it is relatively constant at $1715 \mathrm{~cm} .^{-1}$, somewhat lower, as expected, ${ }^{4 h}$ than the 1735 and $1720 \mathrm{~cm} .^{-1}$ recorded in non-polar solvents for fatty and $\alpha \beta$-unsaturated esters respectively. ${ }^{4 a}$
(iii) The intensities of the carbonyl bands are in the ranges: ethyl esters (260-390) $[(335 \pm 35)] ; *$ methyl esters $(260-420) \quad[(340 \pm 45)] ;$ methyl ketones (190-340) $[(250 \pm 50)]$; and aldehydes $(280-370)$. These values are lower than those which were recorded for similar compounds when a calcium fluoride prism was used ${ }^{10}$ (e.g., $\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et} 540, \mathrm{Ph} \cdot \mathrm{CO}_{2} \mathrm{R} c a .700^{10 c}$), but they agree with Cross and Rolfe's measurements ${ }^{11}$ with sodium chloride optics ($\mathrm{Ph} \cdot \mathrm{COMe} 310, \mathrm{R} \cdot \mathrm{CO}_{2} \mathrm{R} c a .350$, $\mathrm{Ph} \cdot \mathrm{CHO} 320$).

The $3000 \mathrm{~cm}^{-1}$ Region.-Of the CH stretching bands, because of solvent interference, ${ }^{6}$ the sodium chloride prism resolved only the band due to the hydrogen atom of the CHO group; in each of the aldehydes a doublet was found near 2850 and $2750 \mathrm{~cm} .^{-1}(\leqslant 40)$ (Table 4, cols. 1 and 2); such doublets have been observed and discussed for other aldehydes by Pinchas. ${ }^{12}$

The $1650 \mathrm{~cm} .^{-1}$ Region.-(i) Compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$ (Table 1, col. 2) and $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$ (Table 2, col. 2) show the $\mathrm{C}: \mathrm{C}$ stretching band at $1651-1638[1644 \pm 4]$ $\mathrm{cm} .{ }^{-1}$; it had been reported ${ }^{4 i}$ that for the C:C band in $\alpha \beta$-unsaturated ketones the intensity increased and the position was lowered by $c a .30 \mathrm{~cm} .^{-1}$, from the $1678-1668 \mathrm{~cm} .^{-1}$ of unconjugated compounds. The intersity and frequency ($\mathrm{cm} .^{-1}$) of the bands are in the order:

thus it appears that the greater the electron-donating power of the ring, the greater is the intensity of the band, and the lower its frequency (i.e., the greater the single-bond character). The frequency for the 2 -substituted pyridine oxide, and the frequency and intensity for the 4 -substituted pyridine-boron trichloride are out of line with this generalisation; possibly here receipt of electrons by the ring from the double bond becomes of overriding importance.

The bands for the two available compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$ agree well with those for corresponding ethyl esters.

[^3](ii) The aldehydes show a weak band or shoulder (Table 4, col. 4) at $1674-1652 \mathrm{~cm} .^{-1}$ ($20-30$), possibly due to contamination by the corresponding acid.

The 1500-1350 cm..$^{-1}$ Region.-Previous workers have noticed that intensities of methyl and methylene $\mathrm{C}-\mathrm{H}$ deformations are enhanced when the groups are near an oxygen atom, ${ }^{5 c, 13}$ and we confirm this.*
(i) Where these frequencies are at $>1410 \mathrm{~cm} .^{-1}$ they are overlapped by nuclear bands, ${ }^{6}$ and interpretation of the spectrum can be difficult; but the known ${ }^{13,14}$ asymmetrical bending vibrations of $\mathrm{CO}_{2} \mathrm{Me}$ groups at $1446-1435 \mathrm{~cm} .^{-1}$ ($90-140$ except for the 2-pyridyl l-oxide derivative where it is overlapped) $\left[1439 \pm 3 \mathrm{~cm} .^{-1}(110 \pm 15)\right]$ is easily distinguished (Table 2, col. 3). In methyl acetate the band occurs at $1435 \mathrm{~cm} .^{-1}$ (130). ${ }^{15}$ The ethyl esters show weaker bands at $1470-1460 \mathrm{~cm} .^{-1}(25-50)$ and $1447-1444 \mathrm{~cm}^{-1}$ (25-45) (Table l, cols. 3 and 4), corresponding respectively to the scissors methylene vibration and the asymmetrical bending of the (ethoxy) methyl group found by Jones and Nolin ${ }^{16}$ at respectively 1464 (35) and $1446 \mathrm{~cm} .^{-1}(40)$ for ethyl acetate. For the only two methyl ketones where the region is not obscured, bands are found at $1420-1417 \mathrm{~cm} .^{-1}$ $(25-30)$ (Table 3, col. 2). Weak bands or shoulders at $1418-1415 \mathrm{~cm} .^{-1}$ are sometimes found for the esters $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}$ and $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}$ (Table 1, col. 2; Table 2, col. 2).
(ii) The known methyl CH deformation for acetyl groups (ref. 13, at ca. $1364 \mathrm{~cm} .^{-1}$; ref. 17 , at $1370 \mathrm{~cm} .^{-1}$) was found at $1361-1357 \mathrm{~cm} .^{-1}(115-165)\left[1359 \pm 1.5 \mathrm{~cm} .^{-1}\right.$ (135 ± 20)] (Table 3, col. 3).
(iii) The ethyl esters show bands at $1397-1389 \mathrm{~cm} .^{-1}(20-35)\left[1391 \cdot 5 \pm 2 \mathrm{~cm} .^{-1}\right.$ $(30 \pm 5)]$ and $1375-1367 \mathrm{~cm}^{-1}(75-125)\left[1370 \pm 2 \mathrm{~cm}^{-1}(100 \pm 10)\right]$ (Table 1, cols. 5 and 6), corresponding respectively to the (ethoxy) methyl symmetrical bending and methylene wagging modes found by Nolin and Jones ${ }^{16}$ at respectively 1393 (35) and $1359 \mathrm{~cm}^{-1}(60)$ for ethyl acetate; the latter was found at $c a .1372 \mathrm{~cm} .{ }^{-1}$ by Francis ${ }^{13}$ for some simple ethyl esters.
(iv) The aldehydes show a weak band at $1389-1365 \mathrm{~cm} .^{-1}(20-40)$ (Table 4, col. 5), which is probably the CH in-plane deformation mode shown in Raman spectra as a strong band at $c a .1390 \mathrm{~cm} .^{-1} .{ }^{18}$
(IV)

The 1350-1240 $\mathrm{cm} .^{-1}$ Region.-The absorption in this region is assigned to the group (IV) because corresponding methyl and ethyl esters show almost identical absorption there (Table 1, cols. 7-9; Table 2, cols. 4-6) and the absorption of the methyl ketone (IV; $\mathrm{X}=\mathrm{C}$ instead of O) is similar (Table 3, cols. $4-6$), but that of the aldehydes is very different (Table 4, col. 6). The absorption depends on the environment of the carbon atom to which the carbonyl group is attached. Interpretation of this region in the oxides is sometimes difficult because of overlap with the intense $\mathrm{N}^{+}-\mathrm{O}^{-}$band. Strong absorption by esters has been found previously in this region, ${ }^{4 i, 5 d}$ and assigned to $\mathrm{C}-\mathrm{O}$ stretching modes. Where the acid radical is kept constant and the alkyl radical changed the position of the band varies inversely with that of the $\mathrm{C}=\mathrm{O}$ stretching band; ${ }^{4 \boldsymbol{k}}$ this is neither expected nor found in our compounds.
(i) Compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ and the corresponding methyl esters all show three bands, which steadily increase in intensity towards lower frequencies.

[^4]The first band is at $1365 \mathrm{~cm} .^{-1}$ for $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{M} \epsilon$, at $1346-1341 \mathrm{~cm} .^{-1}$ for $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$, at $1345-1339 \mathrm{~cm} .^{-1}$ for $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$, and at $1334-1325 \mathrm{~cm} .^{-1}$ for $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$; the intensities are all (40-70) [(55 $\left.\left.\pm 10\right)\right]$. All the compounds show the other bands at $1300-1295 \mathrm{~cm} .^{-1}(60-90)\left[1298 \pm 2 \mathrm{~cm} .^{-1}(80 \pm 10)\right]$ and at $1260-$ $1250 \mathrm{~cm} .^{-1}(90-125)\left[1256 \pm 3 \mathrm{~cm}^{-1}(110 \pm 10)\right]$. The first of these three bands may be due to a wagging mode of the group adjacent to the carbonyl, which shows at $1356 \mathrm{~cm} .^{-1}$ in methyl propionate and at $1347 \mathrm{~cm} .^{-1}$ in ethyl propionate. ${ }^{13}$
(ii) Compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}, \mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}, \mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$, and $\mathrm{X} \cdot \mathrm{COMe}$ also show in general three bands in this region; the positions and intensities depend in a regular way both on the ring and on the substituent. Absorption in the two compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$ available closely resembles that in the corresponding compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$.
(a) The first of these bands for compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}, \mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$, and $\mathrm{X} \cdot \mathrm{COMe}$ are respectively at the following positions relative to that for $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}: 0-5[1.5 \pm 1 \cdot 5]$ higher, $7-15[10.5 \pm 3]$ higher and $3-8[5 \pm 2] \mathrm{cm} .^{-1}$ lower, and $0.69-1 \cdot 22[1 \cdot 06 \pm 0 \cdot 19]$, $0.50-1.25[0.80 \pm 0.30]$, and $0.15-0.31[0.21 \pm 0.07]$ times as intense. If the benzenoid compounds (intensity $120-150$ in the esters, 25 in the ketone) are taken as standards, the bands in the corresponding 3 - and 4 -pyridyl derivatives and their boron trichloride compounds are $7-15[11 \pm 3] \mathrm{cm} .^{-1}$ higher and of intensity ($30-160$) $[(90 \pm 40)]$ for the esters and (20) for the ketone. For the 2 -pyridyl and 4 - and 3 -pyridyl 1 -oxide derivatives the bands are $5-15[10 \pm 3] \mathrm{cm} .^{-1}$ lower and of intensity ($270-450$) $[310 \pm 80]$ for the esters and $c a$. (80) for the ketones.
(b) The second band is at a relatively constant position $1311-1299[1308 \pm 4] \mathrm{cm} .^{1}$ and intensity $(160-300)[265 \pm 50]$ in the compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$. The in-plane trans $-\mathrm{CH}=\mathrm{CH}$ deformation mode would be expected in this region, but the band is weak, at least in non-conjugated olefins. ${ }^{19}$

Fluctuations in position and intensity are again parallel for compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}$, $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}$, and $\mathrm{X} \cdot \mathrm{COMe}$. Bands for corresponding compounds in the last two series are respectively at positions $1-8\left[3 \frac{1}{2} \pm 2 \frac{1}{2}\right] \mathrm{cm} .^{-1}$ higher, and $10-19[13 \pm 3] \mathrm{cm} .^{-1}$ lower than, and of intensity $0.74-1.25[0.95 \pm 0.17]$ and $0.55-0.70[0.61 \pm 0.06]$ times, those of the $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}$ series.

In compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}, \mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}$, and $\mathrm{X} \cdot \mathrm{COMe}$ the position relative to the corresponding phenyl compound varies in the order: 2 -pyridyl 1 -oxide $34-38,3$ -pyridyl-boron trichloride 24-25, 2-pyridyl 15-19, 4-pyridyl-boron trichloride 6-12, 3pyridyl 6-7, and 4-pyridyl -1 to 7 wavenumbers higher. The intensities for methyl and ethyl pyridine-2-carboxylate and their oxides are (190-280) [(240 $\pm 35)]$, and for the ketones ($160-190$); whereas in the 3 - and 4 -pyridyl series, as well as for their boron chloride compounds and the phenyl series, the esters have an intensity of ($360-540$) $[(475 \pm 65)]$, and the ketones $(280-310)$.
(c) The third band is too often obscured by solvent or $\mathrm{N}^{+}-\mathrm{O}^{-}$absorption for any definite conclusions to be legitimate about its position or intensity.
(iii) The aldehydes show a single band at $1326-1294 \mathrm{~cm} .^{-1}(20-85)$.

The $1200-1100 \mathrm{~cm} .^{-1}$ Region.-Absorption in this region is assigned to the group (V), for ketones do not absorb here, and aldehydes show merely a single band at ca. $1190 \mathrm{~cm} .^{-1}$ $(\leqslant 70)$ (Table 4, col. 7), but the absorption in corresponding methyl and ethyl esters is very similar (Table 1, cols. 10 and 11; Table 2, cols. 7 and 8).
(i) Compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{R}(\mathrm{R}=\mathrm{Et}$ and Me$)$ show one band at $1184-1161$ $\mathrm{cm} .^{-1}(170-310)\left[1174 \pm 7 \mathrm{~cm} .^{-1}(240 \pm 50)\right]$. A band at $1200-1100 \mathrm{~cm} .^{-1}$ has been reported for unsaturated esters. ${ }^{5 e}$
(ii) Compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{R}(\mathrm{R}=\mathrm{Et}$ and Me$)$ show a band at $1158-1153 \mathrm{~cm} .^{-1}(95-$ 130) $\left[1155 \pm 2 \mathrm{~cm} .^{-1}(110 \pm 15)\right]$ which has a shoulder at $1140^{*}-1136^{*} \mathrm{~cm} .^{-1}(80-130)$.
(iii) Compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ show two bands at $1183-1180 \mathrm{~cm} .^{-1}$ (125-150)
${ }^{19}$ Sheppard and Simpson, Quart. Rev., 1952, 6, 1.
and $1159-1151 \mathrm{~cm} .^{-1}(90-125)$; these two bands are shown by the compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$ at $c a .10 \mathrm{~cm} .{ }^{-1}$ higher frequencies, but have very similar intensities.
(iv) Compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}$ show a band at $1175-1170 \mathrm{~cm} .^{-1}(20-70)\left[1172 \pm 3 \mathrm{~cm} .^{-1}\right.$ $(40 \pm 20)]$ which is at higher frequencies ($\geqslant 1188$) in compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}$ and is partly obscured by solvent absorption. Compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}$ and $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}$ absorb at 1136 $1108 \mathrm{~cm} .^{-1}(100-275)\left[1123 \pm 10 \mathrm{~cm}^{-1}(180 \pm 55)\right]$; the peak for the former is at 0 $4 \mathrm{~cm} .^{-1}$ above that for the latter and has $0.80-1.30[1.07 \pm 0.17]$ times the intensity. The peaks for these ethyl esters often show a shoulder.

The $1100-1080 \mathrm{~cm} .^{-1}$ Region. -In this region (Tables $1-3$, cols. 12, 9 , and 7 respectively), all the ethyl esters and ketones show a peak at respectively $1095-1077 \mathrm{~cm} .^{-1}$ (25-65) [$\left.1092 \pm 4 \mathrm{~cm}^{-1}(35 \pm 10)\right]$ and $1089-1075 \mathrm{~cm} .^{-1}(15-30)$ [$1082 \pm 5 \mathrm{~cm} .^{-1}$ $(25 \pm 10)]$, which is present only for those methyl esters with the group directly attached to the ring, and not all of these. The band is possibly present in spectra of the other methyl esters at intensities too low to be distinguished. Ethyl acetate shows a band at $1097 \mathrm{~cm} .^{-1}(40) .{ }^{16}$

The 1040-950 cm..$^{-1}$ Region.-(i) The trans- $\mathrm{CH}: \mathrm{CH} \mathrm{CH}$ deformation of compounds $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{R}\left(\mathrm{R}=\mathrm{Me}\right.$ and Et) occurs at $982-977 \mathrm{~cm} .^{-1}(90-165)\left[980 \pm 2 \mathrm{~cm} .^{-1}\right.$ $(130 \pm 25)]$ (Table 1, col. 14; Table 2, col. 11); in simple trans-olefins it occurs at 980 $965 \mathrm{~cm} .^{-1}(50-150) .{ }^{4 i}$
(ii) The ketones show a band at $968-954 \mathrm{~cm} .^{-1}(15-55)\left[959 \pm 5 \mathrm{~cm} .^{-1}(35 \pm 15)\right]$ (Table 3, col. 8).
(iii) All the ethyl esters have a band at $1035-1010 \mathrm{~cm}^{-1}$ ($45-145$) (Table 1, col. 13), but the position and intensity is more exactly defined for each type; thus compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ and $\mathrm{X} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$ have the band at $1028-1027 \mathrm{~cm} .^{-1}(100-$ 145) and $1033-1027 \mathrm{~cm} .^{-1}(95-115)\left[1029 \pm 3 \mathrm{~cm} .^{-1}(105 \pm 10)\right]$ respectively; and for compounds $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$ a main band is found at $1035-1034 \mathrm{~cm} .^{-1}$ ($60-85$) and a subsidiary one at $1018-1015 \mathrm{~cm}^{-1}(40-50)$. The relative positions of the band for compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Et}$ are $\mathrm{Ph}\left(1028 \mathrm{~cm} .^{-1}\right)>3->4->2$-pyridyl $\sim 4->$ 3 - > 2-pyridyl 1-oxide ~ 3 - ~ 4-pyridyl-boron trichloride ($1010 \mathrm{~cm} .^{-1}$), which is the order of electron-withdrawing ability of the ring; ${ }^{2,3}$ the intensity is ($45-95$) [(70 $\pm 15)]$.
(iv) The corresponding band for the methyl esters is presumably that in Table 2, col. 10. For compounds $\mathrm{X} \cdot \mathrm{CO}_{2} \mathrm{Me}$ it appears at $983-958 \mathrm{~cm} .^{-1}(20-85)\left[965 \pm 8 \mathrm{~cm} .^{-1}\right.$ (45 ± 25)]; there is no simple dependence of position on the electron-withdrawing ability of the ring. The band occurs at considerably higher frequencies in spectra of the other compounds, and as a doublet for $\mathrm{X} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$ (cf. X $\cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$). A band at $980 \mathrm{~cm} .^{-1}(20)$ has been reported ${ }^{15}$ for methyl acetate.

The $900-800 \mathrm{~cm} .^{-1}$ Region.-(i) The aldehydes show the CH out-of-plane deformation band at $835-828 \mathrm{~cm} .^{-1}(50-120)$ (Table 4, col. 8), in the range $975-825 \mathrm{~cm} .^{-1}$ given by Colthup. ${ }^{20}$
(ii) One or two weak bands of unknown origin are found for many ethyl (Table 1, col. 15) and some methyl esters (Table 2, col. 12) at $880-850 \mathrm{~cm} .^{-1}(\leqslant 65)$.

Conclusions.-The $1400-800 \mathrm{~cm} .^{-1}$ region of the spectrum has been shown to be much more amenable to quantitative treatment than was previously suspected. Apparent extinction coefficients are reproducible and comparable when measured under standard conditions, and are shown to be of great value to the interpretation of the spectrum in terms of structural groups.

Experimental

Preparation of Compounds.-The pyridine-aldehydes and most of the benzenoid compounds were redistilled commercial products; the others were prepared by standard methods. The
${ }^{20}$ Colthup, J. Opt. Soc. Amer., 1950, 40, 379.
preparations of most of the pyridines and l-oxides have already been reported; ${ }^{3,6,21}$ compounds were recrystallised or redistilled before measurement.

2-Ethoxycarbonylpyridine 1-Oxide.-Hydrogen chloride was passed 6 hr . through picolinic acid 1 -oxide (4.5 g .) in boiling ethanol [$100 \mathrm{c} . \mathrm{c}$.; dried over $\mathrm{Mg}(\mathrm{OEt})_{2}$]. Volatile material was removed at $100^{\circ} / 15 \mathrm{~mm}$., the residue added to water ($50 \mathrm{c} . c$.) at 0°, and the whole basified with aqueous sodium carbonate and extracted with chloroform (5×30 c.c.). Distillation of the dried extracts gave the ester oxide ($0.15 \mathrm{~g} ., 3 \%$), b. p. $170-180^{\circ}$ (bath) $/ 0.4 \mathrm{~mm}$. (Found: C, $57 \cdot 6 ; \mathrm{H}, 5 \cdot 7 . \quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 57.5 ; \mathrm{H}, 5 \cdot 4 \%$).

The methyl ester oxide was similarly prepared (3%, but 60% of acid recovered), b. p. 175$180^{\circ}$ (bath) $/ 0 \cdot 1 \mathrm{~mm}$. (Found: C, $54 \cdot 8 ; \mathrm{H}, 4 \cdot 7 . \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~N}$ requires $\mathrm{C}, 54 \cdot 9 ; \mathrm{H}, 4 \cdot 6 \%$). The compound has been reported ${ }^{22,23}$ as an intermediate, but not characterised.

Attempts to prepare the above compounds by oxidation of the pyridine esters by peracetic acid failed.

Boron Halide Complexes.-The following were made by the method given in Part VIII: ${ }^{3}$ 4-ethoxycarbonylpyridine-boron tribromide, prisms, m. p. $97-98^{\circ}$, from ethanol (Found: N, $3 \cdot 5$; $\mathrm{Br}, 59 \cdot 7$. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{NBr}_{3} \mathrm{~B}$ requires $\mathrm{N}, 3 \cdot 5$; $\mathrm{Br}, 59 \cdot 7 \%$); 3-ethoxycarbonyl-, m. p. 64-65 ${ }^{\circ}$, from ethanol (Found: C, $36 \cdot 0 ; \mathrm{H}, 3 \cdot 8 . \quad \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{NCl}_{3} \mathrm{~B}$ requires $\mathrm{C}, 35 \cdot 8 ; \mathrm{H}, 3 \cdot 4 \%$) ; 4-(2-ethoxy-carbonylvinyl)-, rhombs, m. p. 202-204 ${ }^{\circ}$, from ethanol (Found: C, $40 \cdot 4 ; \mathrm{H}, 4 \cdot 2$. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{NCl}_{3} \mathrm{~B}$ requires $\mathrm{C}, 40 \cdot 8 ; \mathrm{H}, 3 \cdot 8 \%$) ; 4-methoxycarbonyl- (87%), prisms, m. p. $115-$ 117°, from ethanol (Found: C, $32 \cdot 9 ; \mathrm{H}, 2 \cdot 8 ; \mathrm{N}, 5 \cdot 3 . \quad \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{NCl}_{3} \mathrm{~B}$ requires $\mathrm{C}, 33 \cdot 1 ; \mathrm{H}, 2 \cdot 8$; $\mathrm{N}, 5 \cdot 5 \%$) ; 3-methoxycarbonyl-pyridine-boron trichloride (54%), prisms, m. p. $113-114^{\circ}$, from ethanol (Found: C, 33•1; H, 2.8; N, 5.5\%).

Preparation of Oxides.-Oxidation of the corresponding pyridine with peracetic acid gave: 4-methoxycarbonyl-, m. p. 116.5-118.5 , from ethyl acetate (lit., ${ }^{24} 118-119^{\circ}$); 3-methoxy-carbonyl-, m. p. $97-98^{\circ}$, from ethyl acetate (lit., ${ }^{25} \mathrm{~m}$. p. 97°; ${ }^{23} \mathrm{~m}$. p. $101-102^{\circ}$), and 2-acetylpyridine 1-oxide, b. p. 82° (bath) $/ 0.3 \mathrm{~mm}$. (Found: C, $61 \cdot 6 ; \mathrm{H}, 5 \cdot 3 . \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}$ requires C , $61 \cdot 3 ; \mathrm{H}, 5 \cdot 2 \%$) [picrolonate, prisms (from ethanol), changing to needles at 109°, then melting at 157° (Found: C, $50.4 ; \mathrm{H}, 3.9 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{7} \mathrm{~N}_{5}$ requires $\mathrm{C}, 50.9 ; \mathrm{H}, 3.8 \%$)].

Measurement of Spectra.-A Perkin-Elmer model 21 instrument was used with the following settings: gearing $2^{\prime \prime}$ per micron; mechanical speed belt at bottom but one position; electrical speed 4; no auto-suppression (i.e., speed 20 min . per run); gain $7 \cdot 7$; mechanical response 1 ; electrical response 1 ; light source 0.34 amp .; slit programme 4 (i.e., resolution at 1600,1400 , 1250,1100 , and $850 \mathrm{~cm} .^{-1}$ was respectively $8 \cdot 0,5 \cdot 5,4 \cdot 7,3 \cdot 8,2 \cdot 6$ wave numbers). A sodium chloride prism was used.

The work described in this and the four following papers was done during the tenure (by A. R. K.) of an I.C.I. Fellowship, and we are greatly indebted to Mrs. A. J. D. Katritzky for much help with the computation, to Dr. M. C. Whiting and other colleagues in Oxford for their interest in this work, to Mr. G. Taylor for comments on the statistical treatment, and to Dr. N. Sheppard for very helpful discussion. The spectra were measured by Mr. F. Hastings and Mrs. W. Sheldon (under Dr. Strauss's supervision).

[^5][^6]
[^0]: * Part XI, Hands and Katritzky, J., 1958, 1754.
 ${ }^{1}$ For general review see Katritzky, Quart. Rev., 1956, 10, 395.
 ${ }_{2}^{2}$ Part IV, Katritzky, Randall, and Sutton, J., 1957, 1769.
 ${ }^{3}$ Parts VİII and IX, Bax, Katritzky, and Sutton, J., 1958, 1254, 1258.

[^1]: ${ }^{4}$ Jones and Sandorfy in Weissberger, "Technique of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience Publ. Inc., London, 1956: (a) p. 443 ff ., (b) p. $473 \mathrm{ff}$. ., (c) p. 300, (d) p. 273, (e) p. 265, (f) p. 263, (g) p. 269, (h) p. 471, (i) pp. 369, 374, 377 ff., (j) p. $502 \mathrm{ff} .,(k)$ p. 482.
 ${ }_{5}$ Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London, 1956: (a) p. 114 163, (b) p. 119 ff., (c) p. 21, (d) p. 161 ff., (e) p. 163.
 ${ }^{6}$ Katritzky et al., following papers; Katritzky, Coates, Beard, Hands, and Lagowski, to be published.
 7 Thompson, Spectrochim. Acta, 1956, 9, 133.
 ${ }^{8}$ Jones, ibid., p. 235.

[^2]: ${ }^{9}$ Katritzky and Monro, unpublished work.

[^3]: * Values in parentheses are apparent molecular extinction coefficients. Values in square brackets are arithmetical means and standard deviations, calculated by omitting those compounds where the band is present as a shoulder, and, in the case of ε_{A}, those in which it is superimposed on another band or measured in a 1 mm . cell.
 ${ }^{10}$ (a) Jones, Ramsay, Keir, and Dobriner, J. Amer. Chem. Soc., 1952, 244, 80; (b) Marion, Ramsay, and Jones, ibid., 1951, '73, 305; (c) Hampton and Newell, Analyt. Chem., 1949, 21, 914.
 ${ }^{11}$ Cross and Rolfe, Trans. Faraday Soc., 1951, 47, 354.
 12 Pinchas, Analyt. Chem., 1957, 29, 334.

[^4]: * In γ-picoline oxide the intensity of the CH_{3} symmetrical deformation is <10, but in α-picoline oxide it is 25 , doubtless owing to the proximity of the $\mathrm{N}^{+-} \mathrm{O}^{-}$group (Katritzky, Beard, and Monro, unpublished observations).
 ${ }^{13}$ Francis, J. Chem. Phys., 1951, 19, 942.
 14 Jones, Cole, and Nolin, J. Amer. Chem. Soc., 1952, 74, 5648, 5662.
 15 Nolin and Jones, Canad. J. Chem., 1956, 34, 1382.
 ${ }^{16}$ Idem, ibid., p. 1392.
 ${ }_{17}$ Thompson and Torkington, J., 1945, 640.
 18 Kohlrausch, " Ramanspecktren," Becker and Erler, Leipzig, 1943, pp. 281-282.

[^5]: The Dyson Perrins Laboratory, Oxford University. [Received, December 5th, 1957.]
 [Present address (A. R. K).-University Chemical Laboratory, Cambridge.]

[^6]: ${ }^{21}$ (a) Part II, Katritzky, $J ., 1956,2404$; (b) Parts VII and X, Katritzky and Monro, J., 1958, 150, 1263; (c) Katritzky, $J ., 1955,2581,2586$.
 ${ }_{22}$ Newbold and Spring, J., 1949, S 133.
 ${ }^{23}$ Shimizu, Naito, Ohta, Yoshikawa, and Dohmori, J. Pharm. Soc. Japan, 1952, 72, 1474; Chem. $A b s ., 1953,47,8077$.
 ${ }^{24}$ Yale, Losee, Martins, Holsing, Perry, and Berstein, J. Amer. Chem. Soc., 1953, 75, 1933.
 ${ }^{25}$ Clemo and Koenig, J., 1949, S231.

